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Abstract: Because bottlenecks limit the throughput of production systems, it is important to correctly 
detect and control them. This task is especially demanding in high-speed dynamic production 
environments within asynchronous production lines. A change in conditions often shifts the bottleneck 
from one process to another. This paper proposes a data-driven concept for the detection of dynamic 
bottlenecks in multi-variant production lines. We build on and contribute to the literature of bottleneck 
detection methods. We propose a novel concept that dynamically and automatically detects bottlenecks 
using cycle time data from shop-floor machines. The cycle time distribution of produced batches is 
translated into the cumulative probability function, which is used to detect the moving bottlenecks. 
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1. INTRODUCTION 

To achieve flow efficiency, it is important to detect and 
control bottlenecks in production. In the case where the 
bottleneck keeps shifting from one process to another, it can 
be difficult to create a “lean” production system (Roser et al., 
2002; Goldratt and Cox, 1984). Therefore, lean 
manufacturers—including Toyota— actively work to identify 
and control bottlenecks (Roser et al., 2001).  
 The trend in manufacturing is towards increasing both 
technical and operational process complexity. Operational 
complexity is shaped by a high number of product variants, 
volatile customer demands in combination with short lead 
times, and the need for a high utilization of production 
resources (i.e. cost-efficient production). This complexity is 
especially high for production processes where the scalability 
of the technical equipment (and the resulting financial 
effects) hinders the establishment of a single-product 
production line. In a high-volume, multi-variant production 
line, the bottleneck is likely to move rapidly between 
processes. 
 Regardless of the number of product variants produced 
on a multi-step production line, an important design 
parameter is the (customer) “takt time”. The customer takt 
time in a lean production system is defined as the available 
time for production in a period divided by the amount of a 
certain product variant demanded by the customer in the 
same period (Rother and Shook, 2003). If, and only if, the 
cycle time of each process is synchronized and close to the 
takt time, a flow production without any storage is possible.  
 If production processes are not synchronized (e.g. due to 
batch processes), a true flow production is not possible, as 
consecutive processes have to await the slowest one in line 
— which is the current bottleneck. It imposes limits to the 
overall throughput and requires additional buffers in the line, 
which accumulate waste throughout the processes and 
increase lead times. Based on the customer takt time, every 

production process should be technically designed to produce 
a product variant as close to the customer takt time as 
possible, not faster, but especially not slower. However, the 
practicability of takt time in multi-variant production lines 
has limits. For example, technical and financial challenges of 
synchronizing different product variants and volumes are an 
issue. Moreover, unplanned breakdowns and downtimes 
make the production processes miss their cycle time targets.  
 We apply a design science research method to propose a 
solution to the problem of bottleneck detection in multi-
variant production lines. Accordingly, we structure the paper 
as follows. In section 2, we review the literature and define 
the problem. In section 3, we describe the research approach. 
In section 4, we develop the solution. In section 5, we discuss 
the solution and conclude.  

2. LITERATURE REVIEW 

Different researchers have suggested different methods to 
detect bottlenecks. Reviewing the literature, we find three 
distinctly different approaches to bottleneck detection: pen-
and-paper-based value stream mapping, physical walks along 
the production lines, and computerized methods. 
 Bottleneck detection research usually starts with the 
notion that “throughput is the most relevant metric to 
evaluate the efficiency of production” (Yu and Matta, 2016), 
and the idea that a few machines limit the overall throughput 
of production processes (Liu and Lin, 1994; Li, 2009; 
Betterton and Silver, 2012). These machines are the capacity 
constraints, also described as bottlenecks (Roser et al., 2002; 
Roser et al., 2015; Goldratt and Cox, 1984). For broad 
literature reviews of bottleneck definitions, see Betterton and 
Silver (2012), Yu and Matta (2016) and Roser et al. (2015).  

2.1 Value Stream Mapping for bottleneck detection 

A common systematic approach for identifying bottlenecks is 
value stream mapping (VSM) (Sunk et al., 2017, Dennis, 
2007). VSM is a “highly accepted” method (Sunk et al., 



 
 

     

 

2017) for improving production processes (Dal Forno et al., 
2014). VSM is often described as a classical “pen-and-paper” 
method (Liker and Meier, 2006), which maps the “value-
adding, non-value-adding, and value preserving activities that 
are required to create a product” (Sunk et al., 2017). Starting 
from a manually recorded current state map, an ideal state 
map is proposed (Sunk et al., 2017; Rother and Shook, 2003). 
A key element of VSM approaches is its focus on customer 
takt time. 
 The VSM method currently faces a “diminishing 
gradient” of effectiveness (Sunk et al., 2017). Because the 
“low hanging fruits” have already been picked in many 
factories, the identification and elimination of waste and 
inefficiencies has become more complex (Abdulmalek and 
Rajgopal, 2007). Moreover, classical VSM can hardly be 
used for products with a high number of product variants 
(Singh et al., 2011) or products with a complex bill of 
materials (Braglia et al., 2006). Based on their findings, 
Braglia et al. (2006) proposed supplementary VSM tools as a 
future field of research; these tools are able to cope with the 
variances of production processes by employing statistical 
methods. 
 In their literature review of VSM, Dal Forno et al. 
(2014), included 57 publications from 1999 to 2013. The 
papers were classified into 11 problem categories describing 
the limits of VSM. Related to multi-variant production lines, 
three of these are of special importance: “process 
measurements”, “map obsolescence” and “high product mix”. 
Together, these problems occurred in 74% of the analysed 
contributions. Under these circumstances, the mapped value 
streams did “not represent the process’ real situation, because 
each day the process behaves in a different way” (Dal Forno 
et al., 2014). 
 These limitations of VSM are partly due to the “pen-and-
paper” approach, in which a lot of manufacturers fail to apply 
the VSM repeatedly and regularly (Dal Forno et al., 2014). 
Dal Forno et al. (2014) concluded from their findings that 
only stable processes should be mapped, or if a process is 
complex or not stable, it should be mapped more frequently. 
Facing the efforts required for a manual collection, they 
concluded that new opportunities for applying the VSM 
could be gained if the timely effort for the measurement of 
the relevant production data could be reduced. 
 Besides the usual results of a VSM (long change over 
times, stock, chaotic material flows, etc.), a less known tool 
in the VSM literature can localize the bottlenecks of the value 
stream of a product: the takt diagram (Rother and Shook, 
2003; Singh et al., 2011). In a takt diagram, the measured 
process cycle times are displayed and compared to each other 
and to the customer takt time. The highest bar exceeding the 
customer takt time is the (current) bottleneck. The result is a 
snapshot of the process on the day of mapping. Moreover, the 
resulting VSM of one product is representing the VSM of all 
the products of the previously defined family of products at 
“all times”.  
 The mentioned characteristics of VSM and the takt 
diagram make both inappropriate for analysing bottlenecks in 
the more dynamic environments (i.e. the dynamic relocation 
of bottlenecks) of aligned, multi-variant production lines. In 
this paper, we present a method for statistical analyses of 

multi-variant production lines, using automatically collected 
data to enable a frequent and simple dynamic takt and 
bottleneck analysis.  

2.2 The bottleneck walk and related methods 

Based on the categorization of Yu and Matta (2016), the 
listed methods of bottleneck detection can, even though they 
compare different parameters, be procedurally compared to 
the bottleneck walk of Roser et al. (2015). An exception, 
within the ones described by Yu and Matta (2016) is the one 
proposed by Betterton and Silver (2012). The bottle neck 
walk, developed by Christoph Roser and colleagues (Roser et 
al., 2011; Roser et al., 2002, Roser et al., 2015) over the last 
15 years, is called an active period method.  
 The bottleneck walk is based on several assumptions and 
is time intensive: Roser et al. focused on the detection of 
timely shifting bottlenecks by walking along the production 
process. During the walk, the inventory level along the 
production line is noted down at each station. “Repeating a 
string of observations multiple times” is recommended to 
receive a full picture of the timely shifting bottlenecks. 
Hence, Roser et al. (2015) solved the problem of having only 
one snapshot of the conditions by repeating the bottleneck 
walks several times (i.e. “distributed over several days”). 
Through repeating the bottleneck walks more often, it is 
assumed that all possible bottlenecks, especially timely 
shifting ones, are detected. However, this cumbersome 
process makes the approach time intensive. Roser (2002, 
2015) stressed that it is important to not only focus on the 
value adding steps but also on non-value adding processes to 
detect bottlenecks. 

2.3 The inter-departure time variance method 

The “inter-departure time variance” method (ITV) of 
Betterton and Silver (2012) is based on the analysis of the 
variance of the inter-departure times of each unit produced at 
each station along a production line: The one with the lowest 
ITV is the bottleneck. They show in their paper that the 
proposed method “performs as well or better than other 
published bottleneck detection methods”. However, Betterton 
and Silver (2012) also admitted that the IVT method cannot 
sufficiently locate the bottleneck. Hence, they highlight the 
need for future research; that is, on the impact of the buffer 
level on the method’s capability. 
 Note that the IVT method differs from the other 
bottleneck detection methods, as it is no longer based on 
manually collected data, but on automatically collected data. 
This data-driven approach is further supported by the results 
of Yu and Matta (2016), who highlighted the advantages of 
data-driven bottleneck detection. Yu and Matta (2016) 
presented a software framework to statistically prove the 
reliability of the bottleneck detection method. This was 
needed because the existing methods did not rely on a 
comprehensive real-time collection of data, but rather on 
snapshots.  

2.4 Proposed design to solve the problems 

In this paper, we aim to overcome the challenges related to 
the different approaches above by taking the best from each 
of them. Our proposed conceptual method relies on a 
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 From figure 3, the following can be concluded: The value 
stream is not synchronized even though it might have been 
planned to be. This becomes evident when facing the 
intersections of the customer takt time with different 
cumulative probability functions: For production step ݏଷ, for 
example, only 57 % of the products are produced faster or at 
the threshold, whereas for production step ݏଵ, the probability 
is close to 100%. The step ݏଷ is clearly the bottleneck of the 
value stream, and hence it should be the first target for 
improvement. 
 Accordingly, the value stream takt analysis also reveals 
information about where to apply activities of improvement 
with a product variant-specific value stream, to obtain the 
greatest effect. The proposed dynamic bottleneck detection 
method is thereby more than a classical takt analysis, as it 
considers (due to the distribution) variation over time and 
uses this information to outline potential improvements. 
 The second evaluation uses the data of one process step 
for a single product variant produced, which is compared at 
different points in time (e.g. for each batch produced), 
relative to each other. Additionally, as the same product 
variant ݒ is produced at a specific production step ݏ, the 
costumer tact time can be used as an absolute measure. 
Hence, the variation over time reveals information about the 
stability of the process and can support a long-term 
continuous improvement process.  
 The third evaluation compares the data from different 
product variants ݒ at one production step ݏ. The customer 
takt time cannot directly be applied as an absolute measure. 
Therefore, the underlying cycle times are normalized with 
their product variant-specific costumer cycle times. These 
normalized cycle times can then again be accumulated and 
integrated to receive the expected cumulative probability 
function. Consequently, the ability of a production step ݏ to 
produce different product variants ݒ is evaluated and 
compared. Hence the single production process analysis 
reveals not only information about the capability of a process 
to produce different product variants but also about where to 
apply activities of improvement to receive the greatest 
benefit. 

4.4. Contribution to practice  

The proposed concept enables an automated and 
comprehensive analysis and evaluation of dynamic 
production processes, especially focused on dynamically 
relocating bottlenecks. The value chain comparison outlined 
above fulfils the needs of a time-variant bottleneck detection 
method: Due to its characteristics of displaying the currently 
longest cycle time (lowest probability of achieving the 
costumer tact time) within the whole value stream, the 
method elaborates the bottleneck of the examined value 
stream. As the underlying analysis is time-period specific 
(e.g. a batch, a shift or a day), variations over time, also 
within a batch, can be evaluated through combining 
mechanism one and two, and hence a dynamic bottleneck 
analysis is enabled. Hence, the proposed method promises to 
solve the problem of timely shifting bottlenecks in dynamic 
environments. 

 The proposed concept is intended to make the time-
consuming manual VSM or bottleneck detection approaches 
redundant, while it should increase the validity at the same 
time by considering not only one product variant at one time 
but also all variants at all times. The proposed concept will 
enable a comprehensive overview of the current state of the 
production in the “dimensions” batch, production step and 
value stream. Due to its automatically collected database, the 
accuracy (i.e. the quality of the underlying data) increases 
substantially; facing these facts, we expect the concept to 
drastically reduce the time needed for bottleneck detection.  
 Furthermore, the proposed concept increases the 
efficiency of the production improvement processes. The 
potential improvements (bottlenecks) are automatically 
localized and ranked. This simplifies the “business case” 
process of financial investments into fixing those bottlenecks. 
Finally, the effectiveness of any improvement can directly by 
deduced from a change in a cumulative probability 
distribution graph.  

4.5 Limitations of the proposed method 

The proposed method focuses only on cycle times to detect 
dynamically shifting bottlenecks. As mentioned, no human 
interaction (as in “pen-and-paper” techniques) is needed for 
data collection, which is also a limitation since it alienates the 
users from the data. Additionally, it is important to state that 
the proposed method requires a significant amount of 
production data (i.e. the number of products produced). For 
production lines with a batch size of one, the method is not 
suitable, as there is no cycle time variation per batch, and 
hence no data can be cumulated, integrated and compared.
 It is important to note that the chosen curve fit (i.e. the 
assumption of the cycle time being Weibull-distributed) 
needs validation by testing the whole concept in simulative 
environments or, better yet, in real ones. However, from a 
mathematical point of view, distribution assumptions are not 
really a need when one real data is available: The bar chart of 
real cycle times can also be directly analysed to receive the 
corresponding cumulative probability function.  

5. CONCLUSIONS 

In this paper, we have proposed a concept for bottleneck 
detection for dynamic multi-variant, multi-step production 
lines. In a sense, we have suggested an automated and real-
time version of a takt diagram. Hence, the proposed concept 
enables more than just a timely snapshot of production (as in 
most “pen-and-paper” approaches); it gives a comprehensive 
overview of the dynamically changing conditions of multi-
variant production lines. The concept requires automatically 
collected data of individual products (i.e. process cycle 
times). These cycle times are then accumulated per batch and 
integrated over time to receive the cumulative probability 
function for each product variant at each production step 
along the value stream. We propose three ways of evaluating 
the resulting functions: A batch, single-production process 
and dynamic bottleneck analysis. A main advantage of the 
approach is its simplicity; complex simulation models and 
costly data collection are not needed.  
 
 



 
 

     

 

5.1 Contribution and future research 

This paper contributes to the literature on bottleneck 
detection, as it incorporates current developments – the 
digital shadow – with well-known and accepted methods for 
bottleneck detection. Furthermore, we propose a new method 
that overcomes the disadvantages of existing methods: The 
new method does not use just a “snapshot” of a production 
process, which needs generalization (in terms of time and 
product variants) as an input, but is instead based on real 
data. At the same time, the effort to receive the relevant 
information is drastically reduced. Thus, the proposed 
concept enables an analysis of the dynamic aspects of 
bottleneck localization.  
 The proposed concept needs validation and further 
development to work in a real environment. The graph sଵ in 
figure 3, for example, suggests that 97% of the produced 
products are produced faster than or at the takt time. Further 
research could investigate if this high percentage is a sign of 
waste, as the specific production step is too fast and hence 
over-engineered. Furthermore, the adequacy of the used 
statistics and mathematical analysis need to be proven with 
real data. 
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