Data-driven detection of moving bottlenecksin multi-variant production lines
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Abstract: Because bottlenecks limit the throughput of production systems, it is important to correctly
detect and control them. This task is especially demanding in high-speed dynamic production
environments within asynchronous production lines. A change in conditions often shifts the bottleneck
from one process to another. This paper proposes a data-driven concept for the detection of dynamic
bottlenecks in multi-variant production lines. We build on and contribute to the literature of bottleneck
detection methods. We propose a novel concept that dynamically and automatically detects bottlenecks
using cycle time data from shop-floor machines. The cycle time distribution of produced batches is
translated into the cumulative probability function, which is used to detect the moving bottlenecks.
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1. INTRODUCTION

To achieve flow efficiency, it is important to detect and
control bottlenecks in production. In the case where the
bottleneck keeps shifting from one process to another, it can
be difficult to create a“lean” production system (Roser et .,
2002; Goldratt and Cox, 1984). Therefore, lean
manufacturers—including Toyota— actively work to identify
and control bottlenecks (Roser et al., 2001).

The trend in manufacturing is towards increasing both
technical and operational process complexity. Operational
complexity is shaped by a high number of product variants,
volatile customer demands in combination with short lead
times, and the need for a high utilization of production
resources (i.e. cost-efficient production). This complexity is
especialy high for production processes where the scalability
of the technical equipment (and the resulting financial
effects) hinders the establishment of a single-product
production line. In a high-volume, multi-variant production
line, the bottleneck is likely to move rapidly between
processes.

Regardless of the number of product variants produced
on a multi-step production line, an important design
parameter is the (customer) “takt time’. The customer takt
time in a lean production system is defined as the available
time for production in a period divided by the amount of a
certain product variant demanded by the customer in the
same period (Rother and Shook, 2003). If, and only if, the
cycle time of each process is synchronized and close to the
takt time, aflow production without any storage is possible.

If production processes are not synchronized (e.g. due to
batch processes), a true flow production is not possible, as
consecutive processes have to await the slowest one in line
— which is the current bottleneck. It imposes limits to the
overall throughput and requires additional buffers in the line,
which accumulate waste throughout the processes and
increase lead times. Based on the customer takt time, every

production process should be technically designed to produce
a product variant as close to the customer takt time as
possible, not faster, but especially not slower. However, the
practicability of takt time in multi-variant production lines
has limits. For example, technical and financial challenges of
synchronizing different product variants and volumes are an
issue. Moreover, unplanned breakdowns and downtimes
make the production processes miss their cycle time targets.

We apply a design science research method to propose a
solution to the problem of bottleneck detection in multi-
variant production lines. Accordingly, we structure the paper
as follows. In section 2, we review the literature and define
the problem. In section 3, we describe the research approach.
In section 4, we develop the solution. In section 5, we discuss
the solution and conclude.

2. LITERATURE REVIEW

Different researchers have suggested different methods to
detect bottlenecks. Reviewing the literature, we find three
distinctly different approaches to bottleneck detection: pen-
and-paper-based value stream mapping, physical walks along
the production lines, and computerized methods.

Bottleneck detection research usually starts with the
notion that “throughput is the most relevant metric to
evauate the efficiency of production” (Yu and Matta, 2016),
and the idea that a few machines limit the overall throughput
of production processes (Liu and Lin, 1994; Li, 2009;
Betterton and Silver, 2012). These machines are the capacity
constraints, also described as bottlenecks (Roser et a., 2002;
Roser et a., 2015; Goldratt and Cox, 1984). For broad
literature reviews of bottleneck definitions, see Betterton and
Silver (2012), Yu and Matta (2016) and Roser et al. (2015).

2.1 Value Stream Mapping for bottleneck detection

A common systematic approach for identifying bottlenecksis
value stream mapping (VSM) (Sunk et a., 2017, Dennis,
2007). VSM is a “highly accepted” method (Sunk et a.,



2017) for improving production processes (Dal Forno et al.,
2014). VSM is often described as a classical “pen-and-paper”
method (Liker and Meier, 2006), which maps the “value-
adding, non-value-adding, and value preserving activities that
are required to create a product” (Sunk et al., 2017). Starting
from a manually recorded current state map, an ideal state
map is proposed (Sunk et a., 2017; Rother and Shook, 2003).
A key element of VSM approaches is its focus on customer
takt time.

The VSM method currently faces a “diminishing
gradient” of effectiveness (Sunk et al., 2017). Because the
“low hanging fruits’ have aready been picked in many
factories, the identification and elimination of waste and
inefficiencies has become more complex (Abdulmalek and
Rajgopal, 2007). Moreover, classical VSM can hardly be
used for products with a high number of product variants
(Singh et a., 2011) or products with a complex bill of
materials (Braglia et a., 2006). Based on their findings,
Braglia et a. (2006) proposed supplementary VSM tools as a
future field of research; these tools are able to cope with the
variances of production processes by employing statistical
methods.

In their literature review of VSM, Dal Forno et 4.
(2014), included 57 publications from 1999 to 2013. The
papers were classified into 11 problem categories describing
the limits of VSM. Related to multi-variant production lines,
three of these are of speciad importance: “process
measurements’, “map obsolescence” and “high product mix”.
Together, these problems occurred in 74% of the analysed
contributions. Under these circumstances, the mapped value
streams did “not represent the process real situation, because
each day the process behaves in a different way” (Dal Forno
et a., 2014).

These limitations of VSM are partly due to the “pen-and-
paper” approach, in which alot of manufacturers fail to apply
the VSM repeatedly and regularly (Da Forno et a., 2014).
Da Forno et al. (2014) concluded from their findings that
only stable processes should be mapped, or if a process is
complex or not stable, it should be mapped more frequently.
Facing the efforts required for a manual collection, they
concluded that new opportunities for applying the VSM
could be gained if the timely effort for the measurement of
the relevant production data could be reduced.

Besides the usual results of a VSM (long change over
times, stock, chaotic material flows, etc.), a less known tool
in the VSM literature can localize the bottlenecks of the value
stream of a product: the takt diagram (Rother and Shook,
2003; Singh et a., 2011). In a takt diagram, the measured
process cycle times are displayed and compared to each other
and to the customer takt time. The highest bar exceeding the
customer takt time is the (current) bottleneck. The result is a
snapshot of the process on the day of mapping. Moreover, the
resulting VSM of one product is representing the VSM of all
the products of the previously defined family of products at
“al times’.

The mentioned characteristics of VSM and the takt
diagram make both inappropriate for analysing bottlenecks in
the more dynamic environments (i.e. the dynamic relocation
of bottlenecks) of aligned, multi-variant production lines. In
this paper, we present a method for statistical analyses of

multi-variant production lines, using automatically collected
data to enable a frequent and simple dynamic takt and
bottleneck analysis.

2.2 The bottleneck walk and related methods

Based on the categorization of Yu and Matta (2016), the
listed methods of bottleneck detection can, even though they
compare different parameters, be proceduraly compared to
the bottleneck walk of Roser et a. (2015). An exception,
within the ones described by Yu and Matta (2016) is the one
proposed by Betterton and Silver (2012). The bottle neck
walk, developed by Christoph Roser and colleagues (Roser et
a., 2011; Roser et a., 2002, Roser et a., 2015) over the last
15 years, is called an active period method.

The bottleneck walk is based on several assumptions and
is time intensive: Roser et al. focused on the detection of
timely shifting bottlenecks by walking along the production
process. During the walk, the inventory level along the
production line is noted down at each station. “Repeating a
string of observations multiple times’ is recommended to
receive a full picture of the timely shifting bottlenecks.
Hence, Roser et al. (2015) solved the problem of having only
one snapshot of the conditions by repeating the bottleneck
walks several times (i.e. “distributed over severa days’).
Through repeating the bottleneck walks more often, it is
assumed that al possible bottlenecks, especialy timely
shifting ones, are detected. However, this cumbersome
process makes the approach time intensive. Roser (2002,
2015) stressed that it is important to not only focus on the
value adding steps but also on non-value adding processes to
detect bottlenecks.

2.3 The inter-departure time variance method

The “inter-departure time variance” method (ITV) of
Betterton and Silver (2012) is based on the analysis of the
variance of the inter-departure times of each unit produced at
each station along a production line: The one with the lowest
ITV is the bottleneck. They show in their paper that the
proposed method “performs as well or better than other
published bottleneck detection methods’. However, Betterton
and Silver (2012) also admitted that the IVT method cannot
sufficiently locate the bottleneck. Hence, they highlight the
need for future research; that is, on the impact of the buffer
level on the method' s capability.

Note that the IVT method differs from the other
bottleneck detection methods, as it is no longer based on
manually collected data, but on automatically collected data.
This data-driven approach is further supported by the results
of Yu and Matta (2016), who highlighted the advantages of
data-driven bottleneck detection. Yu and Matta (2016)
presented a software framework to statisticaly prove the
reliability of the bottleneck detection method. This was
needed because the existing methods did not rely on a
comprehensive real-time collection of data, but rather on
snapshots.

2.4 Proposed design to solve the problems

In this paper, we aim to overcome the challenges related to
the different approaches above by taking the best from each
of them. Our proposed conceptua method relies on a



comprehensive automatically updated database of process
data to locate where, when and why bottlenecks occur.
Accordingly, our method enables a clear-time production
step, as well as a product variant-specific analysis of
bottlenecks along the production line.

Furthermore, we do not measure interdependent metrics,
such as the IVT, but we take the cycle time as an
independent, deceiving metric of each process. Thereby, we
not only build on the approaches of Roser et a. (2015) and
Betterton and Silver (2012) but aso expand and improve
them to be applicable to al manufacturing processes, as
recommended by Roser et al. (2015). In addition, none of the
reviewed bottleneck-detection methods are product specific
and therefore do not reveal information about what exact
product variant is causing the bottleneck.

A promising development that can help overcome the
limitations of data collection is the so-caled digital shadow
of a product, which is defined as the “sufficiently precise
image of the processes within (...) the production (...) which
are needed for a red-time capable evauation basis’
(Bauernhangl et a., 2016). If the digitd shadow of each
individual product contains the cycle time at each station
along the value stream, the classical time-invariant snapshot
as well as comprehensive data about timely changing
conditions for each product produced can be attained.

The proposed methodology aims to reduce the
throughput time in a production line. The value-added part of
the throughput time can be composed of the cycle times of
the single production steps (Rother and Shook, 2003). The
distribution of the cycle time at a single production resource
is usually approximated with Weibull’s probability density
function (Tirkel and Parmet, 2017). Employing this
approximation ensures, by its means of standardization, the
comparability of different cycle-time distributions. Besides,
the corresponding cumulative probability function is given in
a mathematically contained way. This function reveals the
probability that a certain parameter is at or below a certain
threshold. The assumption is used within the proposed
concept to illustrate the mechanisms of evaluation.

3. RESEARCH APPROACH

We use the research method of design science research (van
Aken et a., 2016). Based on the specific task of an industrial
partner to increase the efficiency of a multi-variant
production line, a data-driven concept for the detection of
dynamically relocating bottlenecks was developed. The
concept was generalized to be applicable to any kind of
multi-variant production line. The human agency impact of
the proposed method is low, as the whole processes of data
collection and analysis can be fully automated.

The design proposition of the concept can be stated as
follows: On multi-variant, multi-step production lines,
inefficiencies such as bottlenecks and asynchronicities can
currently only be specified based on experience or on
expensive manual and frequent elaborations. The proposed
concept focuses on the analysis of atime- and product-based
variant-dynamic value stream and can be used to precisely
localize improvement potentials by analysing the
automatically collected cycle times by means of statistical
analysis.

4. SOLUTION DEVELOPMENT

4.1 Data collection and preparation

A first step is to automate the collection of machine data. We
propose that for every produced product and thus for every
product variant and at every time, the cycle time should be
collected at each station along the value stream and linked to
the individual product. The result is a digita product shadow
containing al the cycle times aong the value stream. It is
important to highlight here that this includes both value-
adding and non-value-adding steps of the value stream, such
as transport and storage. In doing so, we create the database
for a comprehensive dynamic takt/bottleneck analysis.
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Fig. 1 a Simulative bar chart of the cycle time a a single
production step of a specific product variant for one batch produced
(with atotal number of samples n = 10'353); b) Weibull curve fit of
the given cycle time distribution to receive the probability density
function; and c) integration of the probability density function to
receive the cumulative probability function.



In the second step, the data are prepared for analysis.
First, the cycle time distribution of a specific product variant
v; a a certain production step s; over a given period (e.g. a
batch, a shift or aday) is presented, based on simulative data,
as shown in the bar chart in figure 1a). The cycle times are
displayed on the abscissa, whereas the number of samples on
the ordinate and thereby the absolute frequency is given.
Based on the accumulated data, a curve fit for the Weibull
function with the shaping parameter k and 1, can be
elaborated, in the same way as figure 1b). The resulting
equation can then be integrated to receive the (Weibull)
cumulative probability function, which can then be plotted
the same way as figure 1c).

4.2 Mechanism of evaluation

In the following section, we describe how one can interpret
and use the results of the proposed method to detect moving
bottle necks in multi-variant production lines.

Figure 2a) displays the “design guideline”; that is, the
customer takt time as an absolute scale of evauation. The
intersection of the vertical takt time with the cumulative
probability function provides insight about the percentage of
the number of products of product variants v;, which are
produced faster or at the costumer takt time (here: ~89%).
This analysis enables the first productivity assessment of a
single production step s;: Is the process capable of producing
within the planned threshold of the takt time?
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Fig. 2 & First mechanism of evaluation: Comparison of the
cumulative probability function to the costumer tact time; b) second
measure of evaluation: A comparison of the cumulative probability
functions relative to each other.

Beside the comparison with an absolute scale (i.e. the
customer takt time), the cumulative probability function can

be compared in relation to each other, analysing the shifts or
changes of the shape of the distributions. Figure 2b) displays
a comparison of the cumulative probability functions relative
to each other: The comparison provides insights about the
efficiency of different batches produced, for example, at
different production steps, relative to each other.

The described analysis can now not only be executed for
one product variant v; at one production step s; but can also
be extended to analyze multi-variant production lines. All the
production steps of each product variant v; (i.e. their
corresponding vaue streams), can be compared, and all the
product variants produced at a specific production step s; can
be compared to each other. In summary, the product variant
v;-specific  and  production step  s;-specific  timely
accumulated cumulative probability functions of the whole
production line can be compared.

Cycle time distributions of various product variants at
various production steps can vary due to internal as well as
externa influences. These variations within the proposed
concept are represented by different shaping parameters k and
1/, of the fitted Weibull function and consequently in the
different shapes of the integrated function. The narrower the
underlying distribution, the better. Consequently, the
“optimal” cumulative probability function would have the
shape of a step function, with the step at the planned cycle
time (i.e. the customer takt time).

4.3 Analysis and results

The resulting curves can be compared relatively to each other
in three dimensions through three analyses:

1. Dynamic bottleneck analysis along a value stream

2. Batchandysis

3. Single production step analysis

The first evaluation is basically an automated takt
diagram-like andysis: The data of one specific product
variant v; along its value stream are compared. As different
production steps (when producing one variant v;) are
compared, the variant-specific customer takt time can be
applied as an absolute measure. Figure 3 shows the
cumulative probability function for different production steps
s; dong the value stream, as well as the corresponding
customer tact time, and thereby combines the two presented
mechanisms.
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Fig. 3 Result of the value stream takt analysis: Probability function
for three different production steps s; along the value stream of a
certain product variant v;.



From figure 3, the following can be concluded: The value
stream is not synchronized even though it might have been
planned to be. This becomes evident when facing the
intersections of the customer takt time with different
cumulative probability functions; For production step s, for
example, only 57 % of the products are produced faster or at
the threshold, whereas for production step s;, the probability
is close to 100%. The step s; is clearly the bottleneck of the
value stream, and hence it should be the first target for
improvement.

Accordingly, the value stream takt analysis aso reveals
information about where to apply activities of improvement
with a product variant-specific value stream, to obtain the
greatest effect. The proposed dynamic bottleneck detection
method is thereby more than a classical takt analysis, as it
considers (due to the distribution) variation over time and
uses this information to outline potential improvements.

The second evaluation uses the data of one process step
for a single product variant produced, which is compared at
different points in time (e.g. for each batch produced),
relative to each other. Additionaly, as the same product
variant v; is produced at a specific production step s;, the
costumer tact time can be used as an absolute measure.
Hence, the variation over time reveals information about the
stability of the process and can support a long-term
continuous improvement process.

The third evaluation compares the data from different
product variants v; at one production step s;. The customer
takt time cannot directly be applied as an absolute measure.
Therefore, the underlying cycle times are normalized with
their product variant-specific costumer cycle times. These
normalized cycle times can then again be accumulated and
integrated to receive the expected cumulative probability
function. Consequently, the ability of a production step s; to
produce different product variants v; is evaluated and
compared. Hence the single production process anaysis
reveals not only information about the capability of a process
to produce different product variants but also about where to
apply activities of improvement to receive the greatest
benefit.

4.4, Contribution to practice

The proposed concept enables an automated and
comprehensive anaysis and evauation of dynamic
production processes, especially focused on dynamically
relocating bottlenecks. The value chain comparison outlined
above fulfils the needs of a time-variant bottleneck detection
method: Due to its characteristics of displaying the currently
longest cycle time (lowest probability of achieving the
costumer tact time) within the whole value stream, the
method elaborates the bottleneck of the examined value
stream. As the underlying analysis is time-period specific
(e.g. a batch, a shift or a day), variations over time, aso
within a batch, can be evaluated through combining
mechanism one and two, and hence a dynamic bottleneck
analysis is enabled. Hence, the proposed method promises to
solve the problem of timely shifting bottlenecks in dynamic
environments.

The proposed concept is intended to make the time-
consuming manual VSM or bottleneck detection approaches
redundant, while it should increase the vaidity at the same
time by considering not only one product variant at one time
but also all variants at all times. The proposed concept will
enable a comprehensive overview of the current state of the
production in the “dimensions’ batch, production step and
value stream. Due to its automatically collected database, the
accuracy (i.e. the quality of the underlying data) increases
substantially; facing these facts, we expect the concept to
drastically reduce the time needed for bottleneck detection.

Furthermore, the proposed concept increases the
efficiency of the production improvement processes. The
potential improvements (bottlenecks) are automatically
localized and ranked. This simplifies the “business case”
process of financial investments into fixing those bottlenecks.
Finally, the effectiveness of any improvement can directly by
deduced from a change in a cumulative probability
distribution graph.

4.5 Limitations of the proposed method

The proposed method focuses only on cycle times to detect
dynamically shifting bottlenecks. As mentioned, no human
interaction (as in “pen-and-paper” techniques) is needed for
data collection, which isaso alimitation since it alienates the
users from the data. Additionally, it is important to state that
the proposed method requires a significant amount of
production data (i.e. the number of products produced). For
production lines with a batch size of one, the method is not
suitable, as there is no cycle time variation per batch, and
hence no data can be cumulated, integrated and compared.

It is important to note that the chosen curve fit (i.e. the
assumption of the cycle time being Weibull-distributed)
needs validation by testing the whole concept in simulative
environments or, better yet, in real ones. However, from a
mathematical point of view, distribution assumptions are not
really a need when one real datais available: The bar chart of
real cycle times can also be directly analysed to receive the
corresponding cumulative probability function.

5. CONCLUSIONS

In this paper, we have proposed a concept for bottleneck
detection for dynamic multi-variant, multi-step production
lines. In a sense, we have suggested an automated and real-
time version of a takt diagram. Hence, the proposed concept
enables more than just a timely snapshot of production (asin
most “ pen-and-paper” approaches); it gives a comprehensive
overview of the dynamically changing conditions of multi-
variant production lines. The concept requires automatically
collected data of individual products (i.e. process cycle
times). These cycle times are then accumulated per batch and
integrated over time to receive the cumulative probability
function for each product variant at each production step
along the value stream. We propose three ways of evaluating
the resulting functions. A batch, single-production process
and dynamic bottleneck analysis. A main advantage of the
approach is its simplicity; complex simulation models and
costly data collection are not needed.



5.1 Contribution and future research

This paper contributes to the literature on bottleneck
detection, as it incorporates current developments — the
digital shadow — with well-known and accepted methods for
bottleneck detection. Furthermore, we propose a new method
that overcomes the disadvantages of existing methods: The
new method does not use just a “snapshot” of a production
process, which needs generalization (in terms of time and
product variants) as an input, but is instead based on real
data. At the same time, the effort to receive the relevant
information is drastically reduced. Thus, the proposed
concept enables an analysis of the dynamic aspects of
bottleneck localization.

The proposed concept needs validation and further
development to work in areal environment. The graph s; in
figure 3, for example, suggests that 97% of the produced
products are produced faster than or at the takt time. Further
research could investigate if this high percentage is a sign of
waste, as the specific production step is too fast and hence
over-engineered. Furthermore, the adequacy of the used
statistics and mathematical analysis need to be proven with
rea data
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